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A new family of pseudo-random number generators, the ACORN (additive congruential 
random number) generators, is proposed. The resulting numbers are distributed uniformly in 
the interval [0, 1). The ACORN generators are defined recursively, and the (k + 1)th order 
generator is easily derived from the kth order generator. Some theorems concerning the 
period length are presented and compared with existing results for linear congruential 
generators. A range of statistical tests are applied to the ACORN generators, and their 
performance is compared with that of the linear congruential generators and the Chebyshev 
generators. The tests show the ACORN generators to be statistically superior to the 
Chebyshev generators, while being statistically similar to the linear congruential generators. 
However, the ACORN generators execute faster than linear congruential generators for the 
same statistical faithfulness. The main advantages of the ACORN generator are speed of 
execution, long period length, and simplicity of coding. 0 1989 Academic Press, Inc. 

1. INTRODUCTION 

In this paper we consider the problem of generating a sequence of real numbers, 
distributed uniformly between zero and one. The primary motivation in this work 
was to find a method which would produce statistically uniform and uncorrelated 
sequences of numbers and which could easily be implemented on any computer 
ranging from micro to mainframe. 

Knuth [l] considers at some length the class of linear congruential generators, 
which can be defined by 

Un=(aUn-l+c),od,~ n>l (1) 

(where (Mod I means the fractional part of X) with suitably chosen values for the 
parameters U,, (the initial value; 0 < U, < 1 ), a (an integer valued multiplier; a > 0) 
and c (the increment; 0 < c < 1). The special case c = 0, which was proposed 
originally by Lehmer [2], is generally known as the multiplicative congruential 
method. The more general case of non-zero c which is due independantly to 
Thompson [3] and Rote&erg [4] is often called the mixed congruential method. 
Congruential generators are among the most popular methods used today [l]. An 
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example of such a generator is the subroutine GOSCAF from the NAG subroutine 
library [S], which will be used in this paper to provide a benchmark for testing the 
new generator which is being proposed. 

A second comparison is provided by the Chebyshev mixing method proposed by 
Erber, Everett, and Johnson [6]. In this generator, the random numbers U, are 
determined from 

U” = (1/7r) cos - ‘(2,/2), (2) 

where Z, = Zi _ i /2 and where the initial value Z0 is chosen to lie in the range 
-2 < Z0 < 2. Superficially this generator may appear to satisfy the major objectives 
as described above ; as will be shown, however, it possesses undesirable qualities 
which make it unsuitable as a source of random numbers. 

2. THE ACORN GENERATOR 

Knuth [l] states that we can immediately reject the cases of linear congruential 
generators with a = 0 or a = 1 as leading to sequences which are obviously non- 
random and goes on to consider only those generators for which a > 2. We will 
demonstrate below that there is merit in considering the two cases a = 0 and a = 1 
as the basis for a more general recursive generator which performs as well as the 
mixed congruential generator while being considerably simpler to implement and 
faster to execute. 

We define the kth order ACORN (additive congruential random number) 
generator Xi” recursively from a seed Xg (0 < X0, < 1) and a set of k initial values 
XT, m = 1, . . . . k each satisfying 0 < X7 < 1 by 

x:=x:-,, na1 (3) 

Jf~=W::-‘+x~-,),,,,, n 2 1, m = 1, . . . . k. (4) 

Other additive generators have been defined previously (see, for example, 
Tausworthe [7] or the survey by Halton [8]). In general, such generators calculate 
each number as some additive combination of the previous n numbers in the 
sequence; the ACORN generator is unique in that each number in the kth order 
sequence is derived by combining the previous number in the sequence with a 
corresponding number from the (k - 1)th order sequence. 

The way in which these equations are applied in calculating the random numbers 
is illustrated in Fig. 1. The arrows indicate the numbers which are combined in 
calculating each particular value XF; thus, for example, X: is derived from Xi and 
X: according to Eq. (4) and so 

x: = w: + J%od I * (5) 

Equation (3) simply states that all the numbers XE in the top row of Fig. 1 are set 
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Zero order. Xi- X:-+ x”,- x”,-+ x”, --+ 

i i i 1 
t’ order. x; - x: - x: - x: - x: - 

1 + 1 1 
2”d order. x’o - x:- xz, - x’, - x’, - 

+ + 
P order. x”, - x: - x”, - 

1 - x”, 
FIG. 1. Method of calculation of ACORN numbers. 

equal to the seed X,. ” It should be noted that the performance of the ACORN 
generator is closely related to an appropriate choice of seed. Tests have shown that 
the best performance is obtained by choosing Xi to be a number which has no 
obvious regularities or repetitions of digits; a convenient method in practice was to 
set Xi equal to the machine representation of an irrational number, for example, a 
suitable multiple of the square root of 2. The initial values of Xr in each subsequent 
row m > 1 can be assigned any value in the range 0 < X;;t < 1; for the particular 
example considered in the results section of this paper all the initial values were set 
equal to zero, but similar results are obtained with other choices. It should be noted 
also that this choice of initial values Xy has no effect on the execution times for the 
ACORN generator. 

Clearly, the zero-order ACORN generator (3) is a special case of a mixed 
congruential generator with a = 0, while the first-order generator (Eq. (4) with 
m = 1) is a mixed congruential generator with a = 1. As such, these low-order 
ACORN generators are of little direct use as sources of random numbers. However, 
their usefulness stems from the recursive definition of the general kth-order 
ACORN generators. 

The ACORN generator can conveniently be implemented in one of two ways. 

(i) In testing the generator for randomness, we wish to generate a fixed 
number N of pseudo-random numbers and apply statistical tests to these numbers. 
To minimise the storage requirements and to allow the tests to be applied efficiently 
to successively higher orders of generators we calculate the N values Xz, n = 1, . . . . N 
and apply the statistical tests to these numbers; we then use (4) to calculate Xt+ ‘, 
n=l 3 ..*, N and apply the tests again. This process can be repeated up to any 
desired order of the generator and corresponds to calculating the array in Fig. 1, 
one row at a time. 
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DOUBLE PRECISION FUNCTION ACORN(XDUMMY) 

FORTRAN IMPLEMENTATION OF ACORN RANDOM NUMBER GENERATOR 
OF ORDER LESS THAN OR EQUAL TO 12 (HIGHER ORDERS CAN BE 
OBTAINED BY INCREASING THE PARAMETER VALUE MAXORD). 

R.S.WIKRAMARATNA 

E 
AEE WINFRITH, DORCHESTER, DORSET DT2 BDH. UNITED KINGDOM. 

E 
THE VARIABLE XDUMMY IS A DUMMY VARIABLE. THE COMMON BLOCK 
AC0 IS USED TO TRANSFER DATA INTO THE FUNCTION. 

2 BEFORE THE FIRST CALL TO ACORN THE COMMON BLOCK AC0 MUST 

f 
BE INITIALISED BY THE USER, AS FOLLOWS. THE VALUES OF 
VARIABLES IN THE COMMON BLOCK MUST NOT SUBSEQUENTLY BE 
CHANGED BY THE USER. 

KORDER - ORDER OF GENERATOR REQUIRED ( MUST BE =< MAXORD 1 

XV(l) - ;~~~IF~R RA;DOM NUMBER GENERATOR 
< XV(l) < 1 

XV(l) SHOULD’BE CHOSEN TO’APPROXIMATE AN 
IRRATIONAL NUMBER, EG IF 0. < EPS < l., THEN SET 

XV(l)=EPS*DSQRT~Z.OD0)/1.42 
THE EXAMPLE FOR THE STATISTICAL TESTS USED THIS 
FORM FOR THE SEED, WITH EPS=O.l 

(XV(I+l),I=l KORDER) 
- ;@&INIT;AL VALUES FOR GENERATOR 

=< xv<I+l) < 1 
TH :! EXAMPLE FOR THE STATISTICAL TESTS USED 
ZERO FOR ALL THE INITIAL VALUES. 

AFTER INITIALISATION, EACH CALL TO ACORN GENERATES A SINGLE 
RANDOM NUMBER BETWEEN 0 AND 1. 

IMPLICIT DOUBLE PRECISION (A-H,O-2) 
PARAMETER ~MAXORD=l2,MAXOPl=MAXDRD+l) 
COMMON /ACO/KORDER,XV(MAXOPlj 
DO 7 I=lrKORDER 

, CO~~~~~~~=~XV~I+l~+XV~I~~-INT~XV~I*l)+XV~I~~ 
;~~~~;XV<KORDER+l) 
END 

FIG. 2. Fortran implementation of the ACORN generator. 

(ii) In a practical application of the generator, we wish to compute the kth 
order values, for some fixed value k. We do not know a priori how many such 
values will be required, and we want to avoid storing large arrays of random 
numbers. Starting with the seed Xg and the k initial values Xr, m = 1, . . . . k we 
determine X;Z, m = 0, . . . . k from (3) and (4). The first random number is given by 
Xl; and the values of X;l, m = 0, . . . . k are stored until the next random number is 
required. The process is repeated with each successive call to the generator, the n th 
call updating the values of Xr_ i, m = 0, . . . . k to give values of Xr, m = 0, . . . . k and 
returning the value Xi as the nth random number. This process corresponds to 
calculating the array in Fig. 1 one column at a time; note that it is only necessary 
to store the (k + 1) values in the most recently computed column. Figure 2 is an 
example of a Fortran 77 implementation of the ACORN random number 
generator. 

3. COMPARISON WITH EXISTING GENERATORS 

In interpreting the results of the statistical tests, it is instructive to consider the 
way in which the nth random number in each sequence is derived from its 
predecessor. 
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The class of linear congruential generators has been defined in (1). The 
relationship between U, and U,- r is illustrated in Fig. 3a, for values of a = 5 and 
c = 0.1. Similar plots could be drawn for other values of a and c. In a scatter plot 
of pairs of points ( UZk, U,, ~, ), all the points would lie on the lines shown. Such 
a plot is closely linked to the serial test for successive pairs discussed below; for a 
generator to pass the serial test, the points (UZk, U,,-,) should be equidistributed 
in the rectangular region [0, 1) x [0, 1). Clearly a linear congruential generator 
with a small value of a would have no chance of passing the serial test, whereas 
with larger values of a it is more likely to pass. 

The Chebyshev generator is defined by (2). We can rewrite this as 

and hence 

u,=(l/n)cos-‘[(z~~,-2)/2] (6) 

cos(7cu,)=2[(z,~1/2)*- l] 

=2[cos*(7ru,-,)- l] 

=cos(2xU,-,). (7) 

FIG. 3. Relationship between the (n- 1)th and nth random numbers generated for different 
generators: (a) mixed congruential generator (a = 5, c = 0.1); (b) standard Chebyshev generator, based 
on expansion for cos(2z); (c)Chebyshev generator, based on expansion for cos(32); (d) ACORN 
generator, order k. 
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Thus the generator can be re-written in the form 

u,=2u,-, u,-, co.5 

u,=2-2u,-, u,-120.5 
(8) 

and this relationship between U, and U,- 1 is shown in Fig. 3b. 
If the generator is implemented in this form on a finite precision binary com- 

puter, then it will not work at all. Suppose that U, has k significant binary digits; 
then each successive number U, + , , U, + 2, . . . would have one fewer non-zero digit, 
until the number Un+k would have no significant digits and the sequence would 
collapse to zero. This property of the Chebyshev generators has been previously 
noted by Erber et al. [9]. The reason that the generator wprks at all is due entirely 
to the rounding error which is introduced at each step in calculating the inverse 
cosine, which prevents the sequence from collapsing to zero. However, it is clear 
from Fig. 3b that this particular generator will certainly not pass the serial test for 
successive pairs (since every pair of points will fall on the line shown, and the 
distribution of points on the plane will clearly be non-uniform. We could define 
more complicated generators based on the same ideas as the Chebyshev generator, 
making use of expressions for cos az in powers of cos z and sin z. For example, for 
a= 3, 

and we could define 
cos3z=4cos3z-3cosz (9) 

u,= (l/K) cos-‘(z,), (10) 

where z, = 42: _, - 3z,- I, with an initial value in the range - 1~ z,, < 1. For this 
particular case, the relationship between U, and U,,- 1 is shown in Fig. 3c. Clearly 
such a generator will still perform very badly on the serial test, unless the value of 
a were very large. Thus any improvements along these lines would be at the expense 
of an enormous increase in computational effort. 

For the kth order ACORN generator, the situation is somewhat different. The 
relationship between Xi and Xt- 1 is very simple, as shown in Fig. 3d. However, the 
intercept on the y-axis has a value which varies with n, being simply the value X:-l 
of the corresponding number from the (k - 1 )th order generator. The fact that the 
X:-l are themselves equidistributed, combined with the fact that the method 
increases the randomness of the sequences with increasing order k is a key to the 
success of the ACORN generator. 

4. PERIOD LENGTH FOR ACORN GENERATOR 

Equations (3) and (4) can be re-written in the form 

YZ= Y:-l, na1 

Y::=(Y::-‘+ y:--l)modM n > 1, m = 1, . . . . k, 

(11) 
(12) 
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where the Yz take integer values between zero and (M- l), and by ( Y)modM we 
mean the remainder on dividing Y by M. The YT can be related to the Xr in 
Eqs. (3) and (4) by defining 

x; = YY/M. (13) 

This formulation has the advantage that it is more amenable to theoretical analysis, 
since it only requires integer arithmetic to calculate the YF and the calculations can 
be carried out exactly without any rounding errors. In practice, however, it is more 
convenient to use the formulation of Eqs. (3) and (4) to implement the generator, 
using real arithmetic. The appropriate value of M can be related to the precision 
of the real arithmetic on any particular machine by setting M= l/~, where E is the 
smallest real number such that the machine representations of 1 and (1 + E) are 
different. For a binary computer, M = 2”- ‘, where a is the number of significant 
digits in the internal representation of a real number (typically, tl= 23 in single 
precision and tl = 52 in double precision Fortran on an IBM PC-XT). 

In the following sections we establish bounds on the period lengths of the first- 
and second-order ACORN generators and derive conditions under which the 
bounds are attained. We further show that the period length for the (k + l)th-order 
generator must be an integer multiple of the period length for the kth-order 
generator, and that the period lengths are equal only in special circumstances. 
Finally we make a comparison with existing theoretical results concerning the 
linear congruential generator and show that the period lengths in this case are no 
better than for the first-order ACORN generator, for a given precision of 
arithmetic. 

One approach to increasing the period length is to increase the precision of the 
arithmetic. This is particularly simple to do for the ACORN generators: since the 
only arithmetic operation required is addition modulo 1, it would be very 
straightforward to code an implementation of the ACORN generator which uses 
any specified precision of arithmetic (albeit at the expense of an increase in 
computational effort). 

4.1. Period Lengths for the First-Order ACORN Generator 

THEOREM 1. The maximum possible period length for the first-order ACORN 
generator, defined by (12) with m = 1, is equal to M. For any given values of M and 
Yg, the period length actually obtained is equal to M/H, where H is the highest 
common factor of M and Yz; the maximal period length is attained if and only IBM 
and Yi are relatively prime. 

Proof Yi can take only the M values 0, 1, . . . . (M- l), so there must be at least 
two of the (M+ 1) values Yh, Yi, . . . . Yz which are equal. Suppose that Yi = Y,!, 
where 0 SS i < j < M and suppose further than Yi # YL for any k s.t. i < k < j. Then 
from Eqs. (11) and (12), 

y:,, =v: + YPCILmlM 

=(Yi’+ Y;+l)mo‘jM= Yi’,,. (14) 
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Hence, by induction, Yin + j _ ij = Yf, for all IZ 2 0, and so the sequence YA is periodic 
with period (j - i) < M. 

Suppose that H is the highest common factor of YO, and M. Then delining 
Zg = Yz/Z!Z, p = M/H, and Z!, = (( Yi - YA)/H),,,,, we obtain 

since by definition ZA = 0. 
Then for any n, Zh +m = (nZz + wZ~)~+ and, since Zz and p are relatively 

prime, it follows that Z!,,, = Z!, if and only if m = kp for some integer k. Thus the 
period length for ZA is equal to p = M/H; by definition of the Zi, the sequence Yi 
must also have a period of length p. 

If Yg and A4 are relatively prime then H = 1 and so the sequence YL will have 
the maximal period length of M. 

COROLLARY TO THEOREM 1. Zf M = 2k, then the first-order ACORN generator 
will have a period length M tf and only tf Yg is odd. 

4.2. Period Length for the Higher Order ACORN Generators 

THEOREM 2. The period length Pk+ 1 for the (k + l)th-order ACORN generator 
is an integer multiple of the period length Pk for the kth order generator. Zf we define 
the integer c(k to be the sum, modulo M, of the Yy over one entire period, then 
0 < ak < M, and for any value of n we can write 

‘k=( $, ‘:+i).,,; (16) 

Then, if flk is the smallest strictly positive integer s.t. (tlkfik)mod,,, =O, the period 
lengths are related by P k + , = flk Pk. The period lengths are equal if and only if a, = 0. 

Proof. Suppose that the (k + 1)th order generator has period length Pk+ 1 = P. 
Then 

yk+l = yk+l 
n+P n for all n > 0. (17) 

Making use of Eq. (12), we get that 

v:+p+ y::;-,)modM=(Y:+ Y:‘: 
1 

* (18) 
mod M 

Since YE+’ is periodic, with period P, this implies 

Y;+p= Y; for all n > 0. (19) 

Hence the period length Pk for the k th order generator must divide P = Pk+ 1 
exactly. 
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Combining (16) with (12), we obtain 

yk+l - 
n+P&- Yi,; 

> mod M 

=(Yf:+‘+ak)modM for any n. (20) 

It is clear from (20), together with the definition (16), that Y:Ibk is equal to Yt+’ 
for all n if and only if c(~ = 0; in this case the period length Pk+, will be equal 
to Pk. 

Suppose now that tlk #O. By repeated application of (2O), 

yk+l 
n+Bh =(Y~+l+akP)modM (21) 

for any p and for any strictly positive integer /I; if Bk is the smallest such /I which 
Satisfies (akpk)modM = 0, then Clearly P, + , = PkP,. 

THEOREM 3. Zf Yh is a multiple of H (possibly zero) then the second-order 
ACORN generator has a period of length p or 2,u according to whether p is odd or 
even (where, as before, H is the highest common factor of M and Yz and p = M/H). 

Proof: Theorem 1 tells us that the period length for the first-order ACORN 
generator is equal to p, while Theorem 2 tells us that the period length for the 
second-order ACORN generator must be an integer multiple of this. 

Suppose that the period length is k,u, where k is an integer. By repeated 
application of Eq. (12) we obtain 

‘:+kp= . 

modM 

If YA is a multiple of H, then Yi,, must take each of the 
once in some order as i ranges from 1 to p and exactly k 
1 to kp. Thus 

‘i+k,= YE+kH i (i-l) 
i= 1 > mod M 

=(Y~+kH1L(~L11)/2)rnodM. 

Thus Y;,, is equal to Yi if and only if 

WfC4~ - 1)/2)m,d~ = 0, 

or, equivalently, 

@A~ - 1)/2)mod, = 0. 

(22) 

values H(i - 1) exactly 
times as i ranges from 

(23) 

(24) 

(25) 
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The period length for the second-order ACORN generator is then equal to kp for 
the smallest value of k >, 1 such that (25) holds. 

If p is odd, then (p - 1) is divisible by 2 and so (25) holds for k = 1. Thus in this 
case the period length is p. 

If p is even, then (p - 1) is not divisible by 2, and so (25) only holds if k is 
divisible by 2. This gives a period of length 2~. 

COROLLARY TO THEOREM 3. Zf M = 2k and Yg is odd, then the second-order 
ACORN generator has a period of length 2M. 

4.3. Period Length for the Linear Congruential Generators 

Equation (1) can be written in the form 

V, = (aV,- I + 4modMy n >‘l, 

where V, takes integer values in the range 0 < V, < M and d is an integer-valued 
constant. Defining 

u, = VnIM 

the above equations are related to (1) in the same way as (1 1 )-( 13) are related to 
(3) and (4). 

Knuth [l, pp. 16-201 discusses two theorems concerning the period length for 
linear congruential generators. The first, the proof of which was due to Hull and 
Doble [lo], states that for the linear congruential generator given by (26) with 
non-zero d the maximum period length is equal to M and gives conditions for this 
maximum period length to be achieved. The second, due to Carmichael [ 111, 
considers the case of multiplicative generators (d = 0) and gives the maximum 
period lengths for different values of M, together with conditions for achieving the 
maximum period ; in particular, if M is prime we obtain a period length of M - 1 
(the maximum achievable for any purely multiplicative generator), while for 
M = 2k, the maximum period is M/4. 

4.4. Comparison of Period Lengths 

In the preceding sections we have shown that for a given value of M, it is simple 
to choose a seed Yg such that the first-order ACORN generator has a period length 
equal to M, while the period length of the (k + l)th-order ACORN generator is an 
integer multiple of the period length for the kth order generator; further, the 
multiplier is only equal to 1 in special cases. 

For the linear congruential generator, the maximum possible period length is 
also equal to M, but this will only be achieved by certain special choices of the seed, 
multiplier, and additive constant. 

Thus it is clear that for the higher order ACORN generators, the period lengths 
which can be achieved are many times longer than for the linear congruential 
generators with the same value of M. 
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5. EMPIRICAL TESTS 

The ACORN generator was subjected to various empirical tests of randomness. 
A full description of each of these tests is given in reference Cl, Section 3.3.21. The 
brief notes given below are intended merely to clarify the exact way in which the 
tests have been implemented here. 

(i) Mean and variance. 
(ii) Mean values of pz=4Xz,-iXz,, pj=8X3n-ZX3n-1X3n, and p4= 

16X,, _ 3X4n- 2 X,, _, X,,,. For independent random numbers, the mean of the 
product would equal the product of the means, and so we would expect a value of 
1 in each case. 

(iii) Frequency distribution test. The interval [O, 1) was divided into 100 
equal sub-intervals and a X-square test applied to the frequency of occurrence of the 
random numbers in each of the sub-intervals. 

(iv) Serial test for successive pairs. The unit square was divided into 10 x 10 
equal intervals and a X-square test applied to the frequency of occurrence of the 
pairs (X,, _, , X,,) in each of these sub-intervals. 

(v) Permutation test. The sequence of random numbers was divided into 
groups of 3 elements, and a X-square test applied to the frequency of occurrence of 
each of the 3! = 6 possible orderings of the 3 elements. 

(vi) Gap test. We consider the length of gaps between occurrences of random 
numbers in the range 0.3 < Xi < 0.6. The frequency of gaps of length, 0,’ 1, 2, 3, 4, 
5, 6, 7, and 8 or more was counted, and a X-square test applied to the results. 

(vii) Poker test. The interval [O, 1) was divided into five equal sub-intervals; 
for groups of live successive numbers the number of distinct sub-intervals occurring 
were counted, and a X-square test applied to the frequency of occurrence 5, 4, 3, 
and less than 2 sub-intervals in a group of 5 successive numbers. 

(viii) Maximum of t test. Let I’, = max( U,, , , U,, *, . . . . U,, ,). The frequency 
distribution test was applied to the sequence Vi, j= 0, 1,2, . . . . It should be noted 
that for t = 1 this reduces simply to the equidistribution test and so was only 
applied for values of t in the range 2 < t < 10. 

For comparison purposes, the ACORN generator was implemented in 
FORTRAN on an IBM PC-XT, and the results were compared with those obtained 
using the subroutine GOSCAF from the NAG subroutine library [S] and with the 
Chebyshev mixing method of Erber, Everett, and Johnson [6]. 

The subroutine GOSCAF uses the multiplicative congruential method (1) with 
multiplier a = 13 I3 implemented in the form 

U, = Nn/259, 

where N,, = ( 1313 x N,- ,) mod 2s9 and the initial seed No = 123456789 x (232 + 1). 
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The Chebyshev mixing method (2) was implemented in double precision using 
the initial seed Z, = n- 3. 

In a recent paper, Hosack [12] applied the above tests, with the exception of the 
poker test, to the Chebyshev mixing method as defined above. Hosack also applied 
a number of other tests for randomness. In general, the results for the Chebyshev 
mixing method reproduce those of Hosack and are included here to provide a 
further comparison for the ACORN generator. However, there is one anomaly, 
which is discussed in the results. 

The ACORN generator of order (k) was implemented for values of k d 10 in 
double precision using the method in 2(i) to generate the numbers for the statistical 
testing and the method in 2(ii) for the comparison of execution times with a seed 
Xi = s&1.42 where E = 0.1 and initial values Xb = 0, i = 1, . . . . k. Similar results 
have been obtained using other values for the seed, provided that it is chosen to 
have no obvious regularities or repetitions of digits, as well as for non-zero initial 
values. 

In each case, a sequence of 10,000 random numbers was generated, and the 
empirical tests of randomness (i)-(viii) above applied to the results. The tests were 
all applied at the 0.05 level of significance. 

6. RESULTS 

Table I summarises the results obtained; asterisks represent failures at the 0.05 
significance level. The first-order ACORN generator performs very poorly as a 
source of uniform random numbers. This is to be expected, since the first-order 
ACORN generator is simply a mixed congruential generator with a = 1. 

As the order of the ACORN generator is increased, there are fewer and fewer 
failures, until for k = 5 the generator fails only on the gap test, and then only 
marginally (a value for x2 of 17.55 compared with a 0.05 significance limit of 17.54). 
For values of k 2 6, the ‘ACORN generator passes all the test applied, with one 
exception for k = 7 (the generator failed the serial test at the 0.05 level) and two 
exceptions for k = 8 (the maximum of f tests for t = 3 and t = 9 failed at the 0.05 
level in this case). The same tests have been applied to the ACORN generator using 
different seeds (e.g., Xi defined as above with E = 0.01 and E =O.OOl) with very 
similar results : the ACORN generators for k > 5 appear to pass all the tests, with 
a few isolated exceptions. There was no discernible pattern to the particular tests 
which were failed for the different seeds and different orders of generator. 

The performance of the ACORN generators for k > 5 is comparable with that of 
the NAG routine GOSCAF, which passed all the tests at the 0.05 level. 

The results for the Chebyshev generator reproduced those of Hosack [12]. Its 
performance is very variable, giving reasonable results for the mean and variance 
and passing the frequency distribution test, but performing poorly on the remaining 
tests. An anomalous result for this generator is that it fails the maximum of t tests 
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for all values of t between 2 and 10, whereas Hosack [lo] found that it passed this 
test; however, no details were given concerning his implementation of the test. 

Table II shows a comparison of execution times on an IBM PC-XT for the 
ACORN generators for k = 1,2, . . . . 10, the NAG routine GOSCAF and the 
Chebyshev generator. The table gives the cpu time (in milliseconds) per random 
number generated, calculated in each case as the average over 10,000 calls to the 
appropriate function. Figure 4 shows the cpu time per random number generated ; 
the corresponding times for the Chebyshev generator and the NAG routine are 
shown as horizontal lines. It is clear that the execution time for the ACORN 
generator increases linearly with the order k. The execution time for the ACORN 
generator with k =4 is comparable with that for the Chebyshev generator. The 
NAG routine GOSCAF is considerably slower than either of the other generators; 
by extrapolation of the line on Fig. 4 , we can estimate that the execution time for 
GOSCAF is comparable with that of a 34th order ACORN generator. The same 
comparisons have also been made on other machines and there is some variation 
in the relative speeds of the NAG routine GOSCAF and the ACORN generators: 
on an IBM PC-AT all routines executed faster but the time for the NAG routine 
was comparable with the lOth-order ACORN generator, while on a VAX 8600 the 
time compared with that for the 4th-order ACORN generator. There is a need for 
a more detailed comparison of execution times on different machines to resolve 
these anomalies. 

2 

Order k __) 

FIG. 4. Comparison of execution times per random number generated for the kth order ACORN 
generator for various values of k, the NAG routine GOSCAF and the Chebyshev generator. 
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TABLE 11 

Comparison of Timing of the Different Generators 

Generator 
Time 

(ms/function call) 

ACORN 

K=l 0.461 
K=2 0.637 
K=3 0.812 
K=4 0.988 
K=5 1.158 
K=6 1.334 
K=l 1.510 
K=8 1.686 
K=9 1.861 
K=lO 2.037 

Chebyshev 

NAG Routine 
GOSCAF 

0.971 

6.168 

7. CONCLUSIONS 

A new family of pseudo-random number generators, the ACORN (additive 
congruential random number) generators, has been proposed. The resulting random 
numbers are uniformly distributed in the interval [0, 1). The ACORN generators 
are delined recursively, and the (k + 1)th order generator is easily derived from the 
k th order generator. 

A range of statistical tests has been applied to the ACORN generators for k < 10, 
to the NAG implementation of the linear congruential generator, and to the 
Chebyshev generator. While the performance of the Chebyshev generator and the 
low-order ACORN generators was mixed, the performance of the ACORN 
generators was seen to improve as the order increased up to k = 5. For values of 
k 2 5 the performance was comparable with that of the linear congruential method, 
which passed all the tests at the 0.05 level of significance. 

On an IBM PC-XT the execution time for the ACORN generators was 
considerably faster than for the linear congruential method, while the period 
lengths which can be achieved are longer even for relatively small values of k, and 
they increase with k. Thus the ACORN generator is of particular value in applica- 
tions where very long sequences of random numbers are required, when period 
length and execution times both become significant factors. There was considerable 
variation in the relative speeds on different machines, and further work is required 
to resolve these anomalies. The ACORN generator can be very simply coded in-line 
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rather than as a function call, leading to further saving in execution time. Where 
period length is the overriding consideration, the ACORN generator can be readily 
implemented in arbitrary precision arithmetic, since the only operation required is 
addition modulo 1; by a suitable choice of seed and precision, a period length in 
excess of any desired value can be obtained for the first-order ACORN generator, 
and a period length considerably in excess of this for the kth order generator for 
any ka2. 

ACKNOWLEDGMENT 

The author would like to thank Dr. C. L. Farmer for introducing him to some of the problems of 
generating random numbers and for some very useful discussions concerning this paper. 

REFERENCES 

1. D. KNUTH, The Art of Computer Programming, Vol. 2, Seminumerical Algorithms (Addison-Wesley, 
Reading, MA, 1981). 

2. D. H. LEHMER, in Proceedings, 2nd Symposium on Large-Scale Digital Calculating Machinery, 
Cambridge (Harvard Univ. Press, Cambridge, MA, 1951), p. 141. 

3. W. E. THOMPSON, Comput. J. 1, 83 (1958). 
4. A. ROTENBERG, J. Assoc. Comput. Mach. I, 75 (1960). 
5. NAG, Fortran PC50 Library Handbook-Release I (Numerical Algorithms Group Ltd., Oxford, 

UK. 1983) (unpublished). 
6. T. ERBER, P. EVERETT, AND P. W. JOHNSON, J. Comput. Phys. 32, 168 (1979). 
I. R. C. TAUSWORTHE, Math. Comput. 19, 201 (1965). 
8. J. H. HALTON, SIAM Rev. 12, 1 (1970). 
9. T. ERBER, T. M. RYNNE, W. F. DARSOW, AND M. J. FRANK, J. Compu?. Phys. 49, 394 (1983). 

10. T. E. HULL AND A. R. DOBLE, SIAM Rev. 4, 230 (1962). 
11. R. D. CARMICHAEL, Bull. Amer. Mad Sot. 16, 232 (1910). 
12. J. M. HOSACK, J. Compur. Phys. 67, 482 (1986). 

5Sl/S3/1-3 


